2011-05-26

Factor Regression Model

Factor regression model

The factor regression model, or hybrid factor model, is a special multivariate model with the following form.

 \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n

where,

 \mathbf{y}_n is the n-th  G \times 1 (known) observation.

 \mathbf{x}_n is the n-th sample Lx (unknown) hidden factors.

 \mathbf{A} is the (unknown) loading matrix of the hidden factors.

 \mathbf{z}_n is the n-th sample Lz (known) design factors.

 \mathbf{B} is the (unknown) regression coefficients of the design factors.

 \mathbf{c} is a vector of (unknown) constant term or intercept.

 \mathbf{e}_n is (unknown) error or white Gaussian noise.

The Relationship between Factor Regression Model, Factor Model and Regression Model

The factor regression model can be viewed as a combination of factor analysis model ( \mathbf{y}_n= \mathbf{A}\mathbf{x}_n+ \mathbf{c}+\mathbf{e}_n ) and regression model ( \mathbf{y}_n= \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n ).

Alternatively, the model can be viewed as a special kind of factor model, the hybrid factor model

 \begin{align} & \mathbf{y}_n = \mathbf{A}\mathbf{x}_n+ \mathbf{B}\mathbf{z}_n +\mathbf{c}+\mathbf{e}_n \\ = & \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{x}_n \\ \mathbf{z}_n\end{bmatrix} +\mathbf{c}+\mathbf{e}_n \\ = & \mathbf{D}\mathbf{f}_n +\mathbf{c}+\mathbf{e}_n \end{align}

where,  \mathbf{D}=\begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} is the loading matrix of the hybrid factor model and  \mathbf{f}_n=\begin{bmatrix} \mathbf{x}_n \\ \mathbf{z}_n\end{bmatrix} are the factors, including the known factors and unknown factors.

Reference






Retrieved from : http://en.wikipedia.org/wiki/Factor_regression_model