Pompeiu problem
In mathematics, the Pompeiu problem is a conjecture in integral geometry, named for Dimitrie Pompeiu, who posed the problem in 1929, as follows. Suppose f is a nonzero continuous function defined on a Euclidean space, and K is a simply connected Lipschitz domain, so that the integral of f vanishes on every congruent copy of K. Then the domain is a ball.
A special case is Schiffer's conjecture.
References
- Pompeiu, Dimitrie (1929), "Sur certains systèmes d'équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables", Comptes Rendus de l'Académie des Sciences Paris Série I. Mathématique 188: 1138 –1139
- Ciatti, Paolo (2008), Topics in mathematical analysis, Series on analysis, applications and computation, 3, World Scientific, ISBN 9812811052
External links
Retrieved from : http://en.wikipedia.org/w/index.php?title=Pompeiu_problem&oldid=458416536